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ABSTRACT

Second-order turbulence models of the Mellor and Yamada type have been widely used to simulate the planetary
boundary layer (PBL). It is, however, known that these models have several deficiencies. For example, assuming
the production of the turbulent kinetic energy equals its dissipation, they all predict a critical Richardson number
that is about four times smaller than the large eddy simulation (LES) data in stably stratified flows and are
unable to distinguish the vertical and lateral components of the turbulent kinetic energy in neutral PBLs, and
they predict a boundary layer height lower than expected.

In the present model, three new ingredients are employed: 1) an updated expression for the pressure–velocity
correlation, 2) an updated expression for the pressure–temperature correlation, and 3) recent renormalization
group (RNG) expressions for the different turbulence timescales, which yield

1) a critical Richardson number of order unity in the stably stratified PBL (at level 2 of the model),
2) different vertical and lateral components of the turbulent kinetic energy in the neutral PBL obtained without

the use of the wall functions,
3) a greater PBL height,
4) closer comparisons with the Kansas data in the context of the Monin–Obukhov PBL similarity theory, in

both stable and unstable PBLs, and
5) more realistic comparisons with the LES and laboratory data.

1. Introduction

Reynolds stress turbulence modeling began in the ear-
ly 1940s (Chou 1940, 1945) and since then it has been
developed by both physicists and engineers (e.g., Rotta
1951; Lumley and Khajeh-Nouri 1974; Launder et al.
1975; Pope 1975; Zeman and Lumley 1979; Speziale
1991; Shih and Shabbir 1992). The parameterizations
of the turbulence closures have been formulated theo-
retically, verified experimentally (including comparison
with the ever more reliable LES data), and applied to
various engineering flows. In the geophysical applica-
tions, Mellor (1973), Mellor and Yamada (1974), and
Mellor and Yamada (1982) pioneered the use of tur-
bulence closure models to study the planetary boundary
layer (PBL). The Mellor–Yamada (MY) model and its
numerous variants have been more successful in the
simulation of the PBL than many of the empirical mod-
els and have been widely used to describe the atmo-
spheric PBL and the oceanic mixed layer. The MY mod-
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els are, however, not without deficiencies. Comparison
of MY model results with measured data and LES data
show consistent discrepancies, and close examination
indicates that the weakness of the model comes from
three sources: 1) a crude parameterization for the pres-
sure–velocity and the pressure–temperature correla-
tions, 2) the use of a single ‘‘master’’ length scale (all
the length scales corresponding to different processes
are assumed to be proportional to a master scale), and
3) a downgradient approximation for the third-order tur-
bulent moments. These three aspects can be handled as
three independent components in the model develop-
ment and each of them deserves a separate discussion.
Along with many other efforts, the present authors tried
to address items 2 and 3 elsewhere (Cheng and Canuto
1994; Canuto et al. 1994, 2001). The present paper con-
centrates on item 1, that is, how to improve the param-
eterization for the pressure correlations, thus general-
izing the MY models and improving the comparison
with both measured and LES data. The LES has been
widely and successful employed in the PBL (e.g.,
Moeng and Wyngaard 1986, 1989; Moeng and Sullivan
1994) and LES results have been regarded as experi-
mental data, which are useful to guide and to test the-
oretical studies.

Let us look at deficiency 1 of the MY models and its
variants (e.g., Galperin et al. 1988) more closely. First,
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the level 2 (see section 5 for details) of these models
predicts too low a critical Richardson (Ric) number
(around 0.2), beyond which the turbulence ceases to
exist, while both measurements and LES data (e.g.,
Webster 1964; Young 1975; Wang et al. 1996) indicate
that the critical value is around unity. Second, when
applied to the neutral boundary layer, assuming pro-
duction equals dissipation, none of these models is ca-
pable of differentiating between the vertical and lateral
components of the turbulent kinetic energy, and1 2w2

; in fact, they yield identical expressions for the two,1 2y2

while experiments consistently show that the vertical
component is much smaller than the lateral one (Table
1 of Mellor and Yamada 1982; Nieuwstadt 1985).

As we will show below, these deficiencies are asso-
ciated with the oversimplification of the parameteriza-
tions of the pressure–velocity correlation Pij and pres-
sure–temperature correlation , which will be cor-uPi

rected by adopting more complete expressions. Both Pij

and have been shown to contain a slow (return-to-uPi

isotropy) part and a rapid part (Launder et al. 1975;
Lumley 1978). The rapid parts of both P ij and con-uPi

tain velocity terms related to the mean strain-rate tensor
Sij, and the vorticity tensor Rij, as well as buoyancy
terms related to the heat fluxes. In addition, the rapid
part of also contains a term related to the temperatureuPi

variance . By contrast, MY models of P ij include only2u
the slow part and some of the rapid part (the term pro-
portional to eSij, where e is the turbulent kinetic energy);
for , only the slow part is included. Since each ofuPi

these missing terms represents a specific physical pro-
cess, it seems appropriate and necessary to incorporate
them in the model formulation, as we do in the present
paper.

In sections 2, 3, and 4, we introduce the basic equa-
tions and the new turbulence closure. In section 5, we
derive the new algebraic Reynolds stress and heat flux
model for the PBL. The new model is presented in three
different ‘‘levels’’ according to MY’s terminology. In
section 6, a new value of the critical Richardson number
is derived and discussed. Model constants are deter-
mined in section 7. In section 8, we compare the new
model and the MY model with measured and LES data,
where we can see that the new model matches the mea-
sured and LES data better than previous models. Con-
clusions are presented in section 9.

2. Mean field equations

To model a PBL, we need both mean and turbulent
variables. The governing equations for mean fields are
as follows:

1) mean velocity, Ui:

DU ] 1 ]Pi 5 2 t 2 g 2 2 2e V U ; (1a)ij i ijk j kDt ]x r ]xj i

2) mean potential temperature, Q:

DQ ]
5 2 h , (1b)jDt ]xj

where

D ] ]
[ 1 U , t [ u u , h [ u u . (1c)j ij i j i iDt ]t ]xj

Here ui is the ith component of the turbulent velocity
fluctuation, gi 5 (0, 0, g) is the gravitational acceler-
ation, P is the mean pressure, r is the mean density, V j

is the rotation of the earth, t ij is the Reynolds stress,
and hi is the heat flux.

In the PBL, several approximations can be made to
the equations for the mean wind and temperature. In
Eq. (1a), the horizontal pressure gradient can be ex-
pressed in terms of the mean geostrophic wind com-
ponents Ug and Vg as follows:

1 ]P ]P
, 5 f (V , 2U ) (1d)c g g1 2r ]x ]y

and the rotation term can be approximated as

22e V U 5 f e U ,ijk j k c ij3 j (1e)

where x, y, and z are the eastward, northward, and ver-
tical directions, respectively, f c 5 2V sinf is the Cor-
iolis parameter with V the angular velocity of the earth
and f the latitude. In Eq. (1b), the horizontal temper-
ature gradient can be approximated with the thermal
wind relation,

]V ]U]Q ]Q f g gc, 5 , 2 , (1f)1 2 1 2]x ]y ga ]z ]z

where a is the volume expansion coefficient.
The equations for the eastward and northward hori-

zontal mean wind components U and V and for the mean
potential temperature Q in the PBL can then be written
as

]U ]uw
5 f (V 2 V ) 2 (1g)c g]t ]z

]V ]yw
5 2 f (U 2 U ) 2 (1h)c g]t ]z

]U ]V]Q ] f ]Qg gc5 2 wu 1 V 2 U 2 W . (1i)1 2]t ]z ga ]z ]z ]z

3. Turbulence equations

1) Reynolds stresses, t ij:

]UD ]Uj it 1 D 5 2 t 1 t 1 b hij ij ik jk i j1 2Dt ]x ]xk k

1 b h 2 P 2 e , (2a)j i ij ij

where
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]p ]p 2 ]
P [ u 1 u 2 d pu (2b)ij i j ij k]x ]x 3 ]xj i k

]u]u 2jie [ 2n 5 d e, b [ ag (2c)ij ij i i]x ]x 3k k

] 2
D [ u u u 1 d pu . (2d)ij i j k ij k1 2]x 3k

Here, P ij is the pressure–velocity correlation tensor,
n is the molecular viscosity, e is the dissipation rate of
the turbulent kinetic energy e, and Dij is the diffusion
term.
2) Turbulent kinetic energy e:

1
2 2e 5 q , q [ u u (2e)i i2

De 1 ]Ui1 D 5 2t 1 b h 2 e. (2f)ii ij i iDt 2 ]xj

3) Heat flux, hi:

D ]U ]Qih 2 uh 1 D 5 2h 2 t 1 b u 2 P , (3a)i i j ij i iDt ]x ]xj j

where

]p ]
u hP [ u , D 5 u u u , (3b)i i i j]x ]xi j

where is the pressure–temperature correlation, anduPi

is the diffusion of the heat flux hi.hDi

4) Temperature variance, :2u

D ]Q
2u 1 D 5 22h 2 2e , (4a)u i uDt ]xi

where

2
]u ]

2e [ x , D 5 u u , (4b)u u i1 2]x ]xj i

where x is the molecular conductivity, Du is the dif-
fusion of the temperature variance, and eu is the tem-
perature variance dissipation rate.

In the present study, terms containing the molecular
viscosity n and molecular conductivity x have been ne-
glected, except for e ij and eu. In addition, in the second-
moment equations, rotation has also been neglected. The
modeling of the third-order moments exceeds the scope
of the present paper, but the interested readers may refer
to recent work on the subject (Canuto et al. 1994, 2001).
As already stated, in this paper we concentrate on the
closure parameterization of the correlations P ij and

, which will be shown to improve the PBL modeluPi

results.

4. Turbulence closure

a. e and eu

Equations (2f ) and (4a) contain the two turbulence
variables,

e, e ,u (5a)

which represent the rates of dissipation of e and , and2u
are contributed mostly by small scales with small energy
content but large vorticity. On the other hand, e and

are contributed mostly by the large scales with most2u
of the energy and little vorticity.

Even though exact dynamic equations for e and eu

can and have been derived, they are of little practical
use since most of the terms are difficult to interpret
physically, and thus difficult to represent. A phenom-
enological equation for e has been proposed long ago
and in the case of pure shear flows, it has been used
quite extensively in spite of containing two adjustable
coefficients. When buoyancy is included, the number of
unknown coefficients increases and it is difficult to cal-
ibrate them so as to assure any type of generality. Due
to these difficulties, it is customary to use an alternative
approach, namely one employs the basic relation (Batch-
elor 1971)

3/2e
e 5 , (5b)

L

where L is the dissipation length scale. Rewriting (5b)
in terms of L and t defined as

2e
t 5 (5c)

e

one has
28L

e 5 . (5d)
3t

In section 4b we will discuss how t is determined, thus
the determination of e reduces to the modeling of L, a
variable that has been extensively studied in the past.
Here, we employ the Blackadar–Deardorff (Blackadar
1962; Deardorff 1980) model whereby

 ]Q
l : # 013/2  ]z2 L

l 5 5 
B q ]Q1

min l , 0.53 : . 0 11 2N ]z

`

zq dzE
0kzl0l 5 , l 5 0.11 0 `l 1 kz0

q dzE
0

]Q
2N [ ga , (5e)

]z
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where B1 is a constant, which will be determined in
section 7. Equation (5e) has been used in the PBL con-
text by many authors (e.g., André et al. 1978; Hassid
and Galperin 1983; Galperin et al. 1988).

The differential equation for eu is even more difficult
to calibrate than the e equation and also too complicated
to use. We use instead the parameterization

2u
e 5 (5f)u tu

and we will determine the timescale tu in section 7.

b. e and 2u

The dynamic equations for e and are given by Eqs.2u
(2f ) and (4a). In the so-called level-3 model these two
differential equations are solved. In the level-2.5 model,
the equation is reduced to an algebraic equation by2u
neglecting the storage, advection, and diffusion terms.
In the level-2 model one similarly simplifies the e equa-
tion by assuming that production of e equals its dissi-
pation:

P 1 P 5 e,b s (5g)

where Ps,b represent the production terms due to shear
and buoyancy, respectively. Each production term is
proportional to the gradient of the mean variable in ques-
tion times a turbulent diffusivity K [e.g., see Eqs.
(16a,b)]. In terms of the basic variables e and e, K has
the dependence

2e
1/2K ; ul ; e l ; (5h)

e

and thus the solution of (5g) does not yield e or e sep-
arately but only their ratio t,

tN 5 f (Ri). (5i)

The function f (Ri) is thus uniquely determined by (5g)
as a function of Ri and, as expected, t grows with Ri
indicating that for a fixed shear, the larger the stratifi-
cation, the weaker is the turbulence and the longer is
the timescale t. In the limit t → `, one may consider
the flow to have become almost laminar, namely the
eddies have an infinite lifetime, they no longer break
up, thus no cascade process exists. On the other hand,
for small Ri, the stratification is weak, turbulence dom-
inates, and the eddies tend to break up quite easily due
to the strong nonlinear interactions. In other words, tN
k 1 corresponds to weak turbulence while tN K 1
corresponds to strong turbulence.

c. Pressure correlations

The pressure correlation terms Pij and in Eqs. (2b)uPi

and (3b) contain three distinct contributions due to 1)
turbulence self-interactions (the return-to-isotropy or
slow part), 2) mean shear–turbulence interactions (a rap-

id part), and 3) buoyancy–turbulence interactions (also
a rapid part). The most complete models for P ij and

are given by (Launder et al. 1975; Zeman and Lum-uPi

ley 1979):
(1) (2) (3)P 5 P 1 P 1 P ,ij ij ij ij

u u(1) u (2) u (3)P 5 P 1 P 1 P , (6a)i i i i

where
(1) 21P 5 2t bij py ij

4
(2)P 5 2 eS 2 a S 2 a Zij ij 1 ij 2 ij5
(3)P 5 (1 2 b )B (6b)ij 5 ij

3 5
u (1) 21 u (2)P 5 t h P 5 2 a S 1 R hi pu i i 3 ij ij j1 24 3
u (3) 2P 5 g b u , (6c)i 1 i

where bij is the traceless Reynolds stress tensor defined
as follows:

2e
b 5 u u 2 d . (6d)ij i j ij3

The other tensors are defined as follows:

]U ]U1 ]U 1 ]Uj ji iS 5 1 , R 5 2 (6e)ij ij1 2 1 22 ]x ]x 2 ]x ]xj i j i

2
S 5 b S 1 S b 2 d b S ,ij ik kj ik kj ij km mk3

Z 5 R b 2 b Rij ik kj ik kj

2
B 5 b h 1 b h 2 d b h , (6f)ij i j j i ij k k3

where Sij and Rij are shear and vorticity, respectively.
In most past second-order turbulence models for the

PBL, the pressure correlations terms were parameterized
much less completely than in (6a)–(6c). For Pij, the MY
(1982; Mellor 1973) and Kantha and Clayson (1994)
models only consider:

(1) 21 (2) (3)P 5 2t b , P ; 2eS , P 5 0; (7a)ij py ij ij ij ij

for , the MY model contains only the termsuPi

u(1) 21 u(2) u(3)P 5 t h , P 5 P 5 0.i pu i i i (7b)

Namely, the MY model includes only the slow terms
and one single rapid term (the first term in the expression
of ); most of the rapid terms are neglected, and no(2)Pij

buoyancy effects are included. The models by Kantha
and Clayson (1994) and D’Alessio et al. (1998) improve
the parameterization for , but the term is stillu u(2)P Pi i

missing,
u(1) 21 u(2) u(3) 2P 5 t h , P 5 0, P 5 g b u .i pu i i i 1 i (7c)

More complete parameterizations of both P ij and uPi
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were used by Gambo (1978), Yamada (1985), and Nak-
anishi (2001), but a1 and a2 were either taken to be
identical or set to zero in Eq. (6b), and Sij and Rij were
set to have the same coefficient in Eq. (6c).

In section 5, we will derive new expressions for the
stability functions (SM and SH) using the more complete
pressure correlations. In the following sections, we will
show that previous parameterizations of the pressure
correlations are at the root of some model deficiencies,
for example, the inability to match the data in the neutral
boundary layer as well as in the stably and unstably
stratified flows.

5. Algebraic Reynolds stress and heat flux models

a. Algebraic equations for the second moments

Combining (2a) and (2f ) and using (5c), we obtain
the equation for bij, defined in Eq. (6d):

D 4
b 1 D 5 2 eS 2 S 2 Z 1 B 2 P , (8a)ij ij ij ij ij ij ijDt 3

where

] 1
D [ u u 2 u u d u . (8b)ij i j l l ij k1 2]x 3k

Assuming that the left side of (8a) can be neglected
and employing (6b) for the pressure–velocity correlation
Pij, one obtains the following algebraic equation for bij

b 5 2l etS 2 l tS 2 l tZ 1 l tB ,ij 1 ij 2 ij 3 ij 4 ij (9a)

where

t 4 1py
l 5 , l 5 l, l 5 (1 2 a )l1 2 1t 15 2

1 1
l 5 (1 2 a )l, l 5 b l. (9b)3 2 4 52 2

These model constants will be given in section 7. Sim-
ilarly, in the prognostic equation (3a) for the heat flux
hi , if one neglects the left side and use is made of (6c)
for , one obtains the algebraic equation for hi atuP i

level 3:

2e ]Q
2A h 5 2t b 1 d 1 l tb u , (10a)ij j ij ij 0 i1 23 ]xj

where

A 5 l d 1 l tS 1 l tR (10b)ij 5 ij 6 ij 7 ij

t 3
l 5 1 2 g , l 5 , l 5 1 2 a ,0 1 5 6 3t 4pu

5
l 5 1 2 a . (10c)7 34

At levels 2.5 and 2, we further simplify the problem
by neglecting the left side in the prognostic equation

for , Eq. (4a), to obtain the algebraic equation2u

]Q
2u 5 2t h . (11)u i ]xi

Substituting (11) into (10a), we obtain the algebraic
equation for hi at levels 2.5–2:

2e ]Q
A9 h 5 2t b 1 d , (12a)ij j ij ij1 23 ]xj

where

]Q
2A9 5 l d 1 l tS 1 l tR 1 l t b (12b)ij 5 ij 6 ij 7 ij 8 i ]xj

and where

tul 5 (1 2 g ) . (12c)8 1 t

In the following subsections, we will present a hierarchy
of turbulence models for the PBL.

b. Level-3 model

Since the level-2.5 and level-2 models catch the main
features of the second-order closure models and are easy
to use, they have become the most popular second-order
closure models in the PBL community. We will con-
centrate on them in the sections below. Yet, the level-
3 model has its own strength in that it produces coun-
tergradient heat fluxes, a phenomenon observed in the
upper part of the convective PBL. In the appendix we
will present the details of the level-3 model for com-
pleteness and for future reference.

c. Level-2.5 model

In the level-2.5 model, the turbulent kinetic energy e
is solved from its prognostic equation (2f ):

]e ] 1 ]U
2 2 35 2 u w 1 y w 1 w 2 uw

]t ]z 2 ]z

]V
2 yw 1 gawu 2 e. (13)

]z

The equation for the temperature variance is2u

]Q
2u 5 2t wu . (14)u ]z

From the algebraic equations for and , Eqs. (9a)u u u ui j i

and (12a), we obtain:
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1 t ]U ]V
2 2u 5 q 2 (l 1 3l ) uw 2 2l yw2 3 2[3 3 ]z ]z

1 2l gawu (15a)4 ]
1 t ]V ]U

2 2y 5 q 2 (l 1 3l ) yw 2 2l uw2 3 2[3 3 ]z ]z

1 2l gawu (15b)4 ]
1 t ]U ]V

2 2w 5 q 1 (3l 2 l ) uw 1 yw3 2 1 2[3 3 ]z ]z

1 4l gawu (15c)4 ]
t ]V ]U

uy 5 2(l 1 l ) uw 1 yw (15d)2 3 1 22 ]z ]z

t ]U 1 4
2 2uw 5 2 l 2 l q 1 (l 2 l )u1 2 2 31 2[2 ]z 2 3

t ]V
21 (l 1 l )w 2 (l 2 l ) uy2 3 2 3] 2 ]z

1 l tgauu4 (15e)

t ]V 1 4
2 2yw 5 2 l 2 l q 1 (l 2 l )y1 2 2 31 2[2 ]z 2 3

t ]U
21 (l 1 l )w 2 (l 2 l ) uy2 3 2 3] 2 ]z

1 l tgayu4 (15f)

]Q 1 ]U
21uu 5 2l t uw 1 (l 1 l ) wu (15g)5 6 7[ ]]z 2 ]z

]Q 1 ]V
21yu 5 2l t yw 1 (l 1 l ) wu (15h)5 6 7[ ]]z 2 ]z

]Q 1 ]U ]V
21 2wu 5 2l t w 1 (l 2 l ) uu 1 yu5 6 7 1 2[ ]]z 2 ]z ]z

21
]Q

21 23 1 1 l l gat .5 8[ ]]z
(15i)

Equations (15a)–(15i) can be solved using symbolic al-
gebra. The results are

]U ]V
(uw, yw ) 5 2K , (16a)M1 2]z ]z

]Q
wu 5 2K (16b)H ]z

K 5 etS , K 5 etS (16c)M M H H

1
S 5 (s 1 s G 1 s G ) (17a)M 0 1 H 2 MD

1
S 5 (s 1 s G 1 s G ), (17b)H 4 5 H 6 MD

where GH and GM are defined as

2 2G [ (tN ) , G [ (tS) (18a)H M

2 2
]Q ]U ]V

2 2N [ ga , S [ 1 and (18b)1 2 1 2]z ]z ]z
2D 5 1 1 d G 1 d G 1 d G 1 d G G1 H 2 M 3 H 4 H M

21 d G (18c)5 M

7
21d 5 l l 1 l1 5 4 81 23

1 1
2 2 22 2 2d 5 l 2 l 2 l (l 2 l ),2 3 2 5 6 71 23 4

1
22d 5 l l (4l 1 3l )3 4 5 4 83

1
22 2 2d 5 l l [l l 2 3l l 2 l (l 2 l )]4 4 5 2 6 3 7 5 2 33

1
21 2 21 l l l 2 l5 8 3 21 23

1 1 1
22 2 2 2 2d 5 2 l l 2 l (l 2 l ), s 5 l5 5 3 2 6 7 0 11 24 3 2

1 2 1
22 21s 5 2 l l (l 1 l ) 1 l l l 2 l 2 l1 4 5 6 7 4 5 1 2 31 23 3 3

1
211 l l l1 5 82

1 2
22 2 2 21s 5 2 l l (l 2 l ), s 5 l ,2 1 5 6 7 4 58 3

2
22s 5 l l5 4 53

2 1 1 1
21 2 2 21s 5 l l 2 l 2 l l l 2 l6 5 3 2 1 5 3 21 2 1 23 3 2 3

1
221 l l (l 2 l ).1 5 6 74

(18d)
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In the above, the definitions of the stability functions
SM and SH as well as the dimensionless gradients GM

and GH are different than the corresponding definitions
in the MY model. The transformation between the no-
tations is straightforward:

21 21S 5 2B S (MY), S 5 2B S (MY) (19a)M 1 M H 1 H

2 2G 5 B G (MY), G 5 2B G (MY). (19b)M 1 M H 1 H

In section 8 we will show that the MY model is a
special case of the present model, and that the coeffi-
cients s2 and d5 are both nonzero in the new model and
both zero in the MY model. Since s2 appears in the
expression for SM via Eq. (17a) and d5 appears in the
expressions for both SM and SH via Eq. (18c), a ‘‘struc-
tural symmetry’’ can be seen in the new model while
not in the MY model. By ‘‘structural symmetry,’’ we
mean that: every GH factor has a GM counterpart, and
both GH and GM enter with the same power. In the MY
model, the term s2GM in (17a) and the term d5 in2GM

(18c) are missing.

d. Realizability conditions for level-2.5 model

Realizability requirements are common to second-or-
der closure models. For the present 2.5-level model, the
two variables GM and GH must be limited to certain
domains outside of which the model may produce un-
physical results since some underlying assumptions
(e.g., that departure from isotropy be small) may no
longer be valid.

Let us first consider the limitation on buoyancy. Here
GH may be negative (unstable), zero (neutral), or pos-
itive (stable). Assuming that production equals dissi-
pation for the turbulence kinetic energy e [see Eq. (22)
below], and taking the limit GM → 0 and noticing that
GM is always nonnegative, we have

S (0, G )G 1 2 $ 0.H H H (20a)

Substituting Eq. (17b) into Eq. (20a) yields the relation
2 1/22(s 1 2d ) 1 [(s 1 2d ) 2 8(s 1 2d )]4 1 4 1 5 3G $ .H 2(s 1 2d )5 3

(20b)

For the model constants used here (see section 7), this
minimum value of GH is 210.8; the negative value in-
dicates that it occurs in the unstable region.

Next, we examine the limitation on the shear number.
Following Hassid and Galperin (1983), who argue that
an increase of shear should not result in a decrease of
the normalized momentum flux, we apply the following
condition,

2 2 1/2d (uw 1 yw )
$ 0. (21a)[ ]dG eM

Using Eqs. (16)–(18), Eq. (21a) can be reduced to a
cubic inequality in GM,

3 2s d G 1 [(3s d 2 s d )G 1 3s d 2 s d ]G2 5 M 1 5 2 4 H 0 5 2 2 M

21 [(s d 2 3s d )G 1 (s d 1 s d 2 3s d )G1 4 2 3 H 1 2 0 4 2 1 H

2 3s 1 s d ]G2 0 2 M

22 (s 1 s G )(d G 1 d G 1 1)0 1 H 3 H 1 H

, 0. (21b)

Although Eq. (21b) can be solved exactly, one may use
the following approximate expression based on the fact
that the terms containing s2 and d5 are relatively small,

21 1 d G 1 d G1 H 3 H maxG # [ G . (21c)M Md 1 d G2 4 H

e. Level-2 model

If we assume that production equals dissipation, the
differential equation for e, Eq. (13), reduces to

S (G , G )G 2 S (G , G )G 2 2 5 0,M M H M H M H H (22)

which can be rewritten as an equation for GM (or for
GH) that depends on only one parameter, the gradient
Richardson number,

2G NHRi 5 5 . (23a)
2G SM

Equation (22) then becomes
2 2(c Ri 2 c Ri 1 c )G 1 (c Ri 1 c )G 1 21 2 3 M 4 5 M

5 0, (23b)

where

c 5 s 1 2d , c 5 s 2 s 2 2d ,1 5 3 2 1 6 4

c 5 2s 1 2d , c 5 s 1 2d ,3 2 5 4 4 1

c 5 2s 1 2d . (23c)5 0 2

It is important to check the consistency of (21c) with
(23b). At level 2, the results are presented in Fig. 1,
while the use of the MY model gives rise to the results
presented in Fig. 2. It is apparent that in the present
model, GM is smaller than for all Ri , Ric andmaxGM

thus the model is realizable. On the other hand, the MY
GM is larger than for Ri $ 0.064, indicating thatmaxGM

the MY model at level 2 is not compatible with Hassid
and Galperin (1983)’s condition even for moderate
Richardson numbers.

Substituting the GM solved from (23b) into (17a,b)
we can further plot the stability functions SM and SH as
functions of Ri (Figs. 3 and 4).

6. Critical Richardson number

In the level-2 model, the critical Richardson number
Ric, beyond which stable stratification effectively sup-
presses the turbulence, can be found by considering the
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FIG. 1. Solid line: GM as a function of the gradient Richardson
number Ri, obtained from the present model at level 2, Eq. (23b);
dashed line: as a function of Ri, obtained from Eq. (21c).maxGM

FIG. 2. Similar to Fig. 1 but for the MY model.

FIG. 3. The stability function SM vs the gradient Richardson number
Ri. The solid line represents the present model; the dotted line, the
MY model. Note that the definitions of SM and SH and those in the
MY model differ by a constant [see Eq. (19a)].

limit e → 0, that is, GM → `. In this limit, Eq. (23b)
is satisfied only if the coefficient of the quadratic term
vanishes, which yields

2 1/2c 1 (c 2 4c c )2 2 1 3Ri 5 . (24a)c 2c1

Using the model constants determined in section 7, we
obtain

Ri 5 0.96.c (24b)

Although most previous second-order closure models
give Ric ; 0.2, there is a variety of data that are in
favor of a Ric of order one. Early laboratory data by
Taylor (as cited in Monin and Yaglom 1971) showed
that turbulent exchange exists even when Ri . 1. Web-
ster (1964) and Young (1975)’s laboratory measure-
ments showed that mixing persists up to Ri ; 1. In the
oceanic PBL, Martin (1985) showed that Ri ; 1 is
needed to obtain the correct mixed layer depth at Papa
and November stations. More recently, direct numerical
simulation (DNS; Gerz et al. 1989) and LES (e.g., Wang
et al. 1996; Kosovic and Curry 2000) show that tur-
bulence exists up to Ri ; 1. Historically, the criterion

1
Ri $ (24c)

4

was established by Miles (1961) and Howard (1961) on
the basis of linear stability analysis. However, when
nonlinear interactions were included, Abarbanel et al.
(1984) showed that the sufficient and necessary con-
dition for stability is not (24c) but

Ri $ 1, (24d)

which is in agreement with our result (24b).
The numerical value of Ric given by (24b) is a con-

sequence of the closure parameterizations and the values
of the model constants via Eq. (24a). It is to be under-
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FIG. 4. Same as Fig. 3 but for the stability function SH.

stood that different choices of the (often scattered) data
underlying the model constants may lead to somewhat
different values of Ric, and the best we can do is to
choose the ones we believe are the best, guided by the
theoretical, nonlinear analysis (Abarbanel et al. 1984)
and numerous LES and laboratory results, which indi-
cate that Ric should be of order unity (also see Strang
and Fernando 2001). Therefore, the value 0.96 in (24b)
should be regarded as a suggestion and is subject to
some changes when more data become available.

7. Determination of model constants

A critical part in the determination of the closure
parameters (defined in 9b, 10c, and 12c) is the turbu-
lence timescale ratios tpy , tpu and tu; tpy , and tpu are
the timescales that enter the first term in the pressure
correlations (thus, the subscript p) for the velocity and
temperature fields. In the phenomenological models
these are known as the Rotta terms and their ratios to
the dynamical timescale t were considered adjustable
parameters. In fact, many previous higher-order PBL
models determine these timescale ratios empirically (for
a summary, see Wichmann and Schaller 1986). In the
present study we take a new approach: instead of treat-
ing these parameters as free, we employ the expressions
from a recent theoretical turbulence model that was
based in part on renormalization group (RNG) methods
and whose predictions were tested on a variety of flows
(Canuto and Dubovikov 1996a,b, 1997):
t 2 t tpy u215 , 5 5(1 1 s ), 5 s , (25a)t0 t0t 5 t tpu

where st0 is the turbulent Prandtl number in neutral
flows and will be determined later on. Applying (25a)
in (9b), (10c), and (12c) gives

2
21l 5 , l 5 0.107, l 5 5(1 1 s ),1 5 t05

1
l 5 (1 2 g )s , g 5 , (25b)8 1 t0 1 3

where the value of g1 is also given by RNG.
To determine l2, l3, and l4, we adopt the following

expressions (Shih and Shabbir 1992; Canuto 1994):

2
a 5 6a , a 5 (2 2 7a ),1 5 2 53

1 4
1/2a 5 1 1 F , F 5 0.64,5 1 210 5

1
b 5 , (25c)5 2

where the value of b5 is given by RNG. Substituting
(25a)–(25c) in (9b) yields

l 5 0.0032, l 5 0.0864, l 5 0.1.2 3 4 (25d)

We parameterize e (the dissipation rate of e) as
3q

e 5 , (26a)
B l1

which corresponds to

B l1t 5 , (26b)
q

where the dissipation length scale , ; kz as z ; 0 and
the constant B1 is defined as B1 5 q3/ , where u* is3u*
the friction velocity, and the value of B1 must be de-
termined. In the neutral surface layer (taking the mean
wind direction as the x direction), we derive from (15e)
that B1 is related to the values of l1, l2, and l3:

23/41 1
2 2B 5 l 2 l 1 l 5 19.3, (27)1 1 3 21 24 3

where we have used the fact that GM ; . This value4/3B1

of 19.3 for B1 is different from the commonly used value
of 16.6, which is determined in Mellor and Yamada
(1982) by averaging several different data quoted in
their Table 1. When different and/or new data are used
in the averaging process, a new value of B1 may be
obtained. For example, Enger (1986) uses B1 5 27 de-
rived from Kansas spectra (Kaimal et al. 1972) and other
laboratory data. A value of 27.4 was obtained for B1 by
Nieuwstadt (1985) and by Andrén and Moeng (1993),
a value of 22.6 was used by Therry and Lacarrére (1983)
and a value of 24 is used by Nakanishi (2001). Instead
of trying to determine B1 directly from the scattered
data, we look into how the value of B1 relates to the
values of l1, l2, and l3 [Eq. (27)]. The value of l1 is
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determined from the renormalization group theory pre-
sented in Canuto and Dubovikov (1996a,b; 1997). The
values of l2 and l3 are from theoretical formulations
that are shown to be consistent with measured data (Shih
and Shabbir 1992; Canuto 1994). The value 19.3 for B1

may be considered a compromise between the MY value
(16.6) and the subsequent larger values.

To determine the values of l6, l7, and st0, we need
some auxiliary relations. First, from (15g), (15i), an
expression for the ratio of the vertical and longitudinal
heat fluxes can be derived,

21
wu 1

21/22 5 l G s 1 (l 1 l ) , (28a)5 M t 6 7[ ]uu 2

where st [ SM/SH is the turbulent Prandtl number. Web-
ster’s (1964) experimental data show that this ratio ap-
proaches unity as Ri ; 0,

21
1

22/3l B s 1 (l 1 l ) 5 1. (28b)5 1 t0 6 7[ ]2

Second, in a near-neutral surface layer, from (15g),
(15i), we obtain

1
2 4/3l 2 B (1 1 l 2 3l )s l5 1 2 3 t0 53

1
4/32 B (l 2 l )(2s 1 l 1 l ) 5 0. (28c)1 6 7 t0 6 74

Using (10c), (28b), and (28c), we obtain,

4 4 1
2/3a 5 1 s 1 2 B (1 1 l 2 3l ) (28d)3 t0 1 2 3[ ]5 5 3

and l 6 and l 7 can be obtained using (28d) in (10c).
We still need to determine a value for s t0 in a con-
sistent manner. From the third expression of (25b) and
(28b)–(28d), s t0 is found to be related to B1 , l 2 and
l 3 as follows:

2/3 1/2 2/3 4/3 1/275 2 3B 1 3 [1875 1 150B 1 (403 1 400l 2 1200l )B ]1 1 2 3 1s 5 5 0.82. (29a)t0 2/3 2/32B [3 1 4B (1 1 l 2 3l )]1 1 2 3

So it follows that:

l 5 11.04, l 5 0.786, l 5 0.643,5 6 7

l 5 0.547. (29b)8

To summarize, the basic model constants determined
above are presented in Table 1.

The other useful constants which can be calculated using
Table 1 and Eqs. (18d) and (23c) are listed in Table 2.

8. Comparison with Mellor–Yamada model and
experimental data

a. Mellor–Yamada model

The MY model (Mellor and Yamada 1982) corre-
sponds to

2A1 24/3l 5 4 6 1 B ,1 11 2[ ]B1

1 3A B1 1l 5 l 5 l 5 l 5 l 5 ,2 3 4 52 B 3A1 2

t Bu 2l 5 l 5 1, l 5 5 . (30a)6 7 8 t B1

Thus

6A1l 5 , a 5 a 5 a 5 g 5 0, (30b)1 2 3 1B1

where the constants A1, B1, A2 and B2 are determined
by Mellor and Yamada to be

(A , B , A , B ) 5 (0.92, 16.6, 0.74, 10.1),1 1 2 2 (30c)

which correspond to a set of value for the model con-
stants in the present model

(l , l , l , l ) 5 (0.168, 0.166, 0.166, 0.166)1 2 3 4

(l , l , l , l , B ) 5 (7.48, 1, 1, 0.608, 16.6).5 6 7 8 1 (30d)

Substituting (30d) into (18d), (23c), and (24a) yields

Ri (MY) 5 0.193.c (30e)

b. Comparison with measured data in neutral PBL

One of the deficiencies of the MY model, as Mellor
and Yamada pointed out themselves, is that in a neutral
boundary layer, the model cannot distinguish and1 2y2

, the lateral and vertical components of the velocity1 2w2

variance, while experimental data consistently show that
is always significantly smaller than . Shir (1973)2 2w y

and Gibson and Launder (1978) added additional terms
to the pressure correlations to parameterize the wall ef-
fects, assuming that in proximity to the wall, the transfer
of turbulence energy from the horizontal to the vertical
components is altered as the vertical extent of the eddies
is suppressed. In this way and can accordingly2 2y w
be differentiated. The present model, however, offers an
alternative that will be able to, at least partially, account
for the difference between and , without resorting2 2y w
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TABLE 1. Basic model constants.

l1 l2 l3 l4 l5 l6 l7 l8 B1

0.107 0.0032 0.0864 0.1 11.04 0.786 0.643 0.547 19.3

TABLE 2. Derived constants. Useful constants calculated using
Table 1 and Eqs. (18d) and (23c).

d1

d2

d3

d4

d5

7.0682 1022

7.0424 1023

5.5819 1024

3.4731 1024

23.1275 1026

s0

s1

s2

s4

s5

s6

5.3500 1022

2.3779 1023

22.2425 1025

6.0386 1022

5.4698 1024

6.8435 1025

c1

c2

c3

c4

c5

1.6634 1023

1.6148 1023

1.6170 1025

2.0175 1021

23.9415 1022

TABLE 3. Measured data and present model prediction in neutral
PBL.

Data/Model u2/u2
* y 2/u2

* w2/u2
* B1

Data (MY)
Data (Nieuwstadt)
Present model prediction

3.61
4.2
3.03

1.74
3
2.38

1.15
1.9
1.78

16.6
27.4
19.3

to adding wall terms to the pressure correlations. In fact,
the measured data indicate that the inequality of and2y

may be mainly not due to the wall effects, as shown2w
by Fig. 6 of Grant (1992), in which the ratio / is2 2w y
roughly around 0.5, even far away from the boundaries;
the ratio is never 1 at any height within the PBL. The
present model employs the standard, advanced pressure
correlations (without wall terms) into the model closure,
which naturally allow and to be different. To see2 2y w
this we assume production equals dissipation in a neutral
boundary layer, reducing (15a)–(15c) of the present
model to

2u 1 l 1 3l2 35 1 (31a)
2q 3 3
2y 1 2l25 2 (31b)
2q 3 3
2w 1 l 2 3l2 35 1 . (31c)
2q 3 3

In the MY model (and in all the second-closure PBL
models known to us) l2 5 l3, which makes 5 ,2 2y w
while in the present model l2 and l3 are two indepen-
dent parameters, and we choose to determine them ac-
cording to Shih and Shabbir (1992)’s expressions that
are derived from theoretical considerations. In Table 3
we compare the result of the present model in the neutral
PBL with the measured data used by Mellor and Yamada
(1982) and by Nieuwstadt (1985).

Since the difference between and is propor-2 2y w
tional to q2 according to (31a)–(31c), and since q2 typ-
ically decreases with height and nearly vanishes near
the top of the PBL, 2 also decreases and vanishes2 2y w
as height increases. Thus both the surface and the free
flow cases are approximated.

The predicted value for is smaller than the quot-2 22u u*
ed data for the following reason: the quoted data were
taken mostly in the lower part of the surface layer, while
(31a)–(31c) give some weight to data in the middle and
upper parts of the surface layer. The profiles of the mea-
sured data show that when the scaled height z/h (h is
the PBL height) increases from the surface, decreases2u

faster than and [see, e.g., Fig. 1a of Andrén2 2y w
(1991), in which drops to below 3 at z/h , 0.1;2 22u u*
Figs. 26 and 27 of Khurshudyan et al. (1981), in which
while decreases with height, and actually in-2 2 2u y w
crease slightly for z/h , 0.1].

c. Comparison with measured and LES data in
stratified flows

The turbulent Prandtl number, s t 5 KM /KH , is one
of the important parameters of turbulence. We com-
pare the inverse of s t as a function of the gradient
Richardson number Ri resulting from both the present
model and the MY model with the experimental data
of Webster (1964). It is clear that turbulence in the
stably stratified flow exists well beyond the MY crit-
ical value Ri ø 0.2. According to the experimental
data, the critical value of Ri should be of order unity,
and the present model falls within the range of the
measured data (Fig. 5).

We also compare the vertical and lateral heat flux
ratio 2 / (as a function of Ri resulting from bothwu uu
the present model and the MY model with the experi-
mental data of Webster (1964). Webster described the
ratio as ‘‘(being) seen to fall catastrophically from unity
in neutral conditions to only about 0.5 at Ri equal to
0.2 and even less for higher Richardson numbers.’’ The
present model gives the critical Richardson number Ric

5 0.96, in agreement with the data (Fig. 6).
It is also informative to examine the nondimensional

shear and potential temperature gradients defined as

kz kzu* ]Q
F 5 S, F 5 2 , (32)m hu* wu ]zs

where u* and s are the friction velocity and the sur-wu
face potential temperature flux, respectively, and S is
the shear given by Eq. (18b). Businger et al. (1971)
analyzed the Kansas data in the constant flux surface
layer and expressed Fm and Fh as functions of the di-
mensionless height z, which is the ratio between the
height z and the Monin–Obukhov length L,
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FIG. 5. The inverse turbulent Prandtl number (normalized by21s t

its value for neutral stratification) vs the gradient Richardson number.
The solid line is the result of the present model at level 2. The dotted
line represents the level-2 MY model. The experimental data by Web-
ster (1964) are redrawn here as filled circles. The present model yields
a much larger critical Richardson number (ø1) than the Mellor–
Yamada model (ø0.2).

FIG. 6. Ratio of the rates of heat transport in the w direction (ver-
tical) and the u direction (horizontal, along the mean flow), 2 /wu

, vs the Richardson number. The solid line represents the result ofuu
the present model, while the dotted line represents the MY model.
The experimental data (Webster 1964) are redrawn here as filled
circles.

21/4(1 2 15z) : z , 0
F 5 (33a)m 51 1 4.7z: z . 0

21/20.74(1 2 9z) : z , 0
F 5 (33b)h 50.74 1 4.7z: z . 0,

where
3z 2Qu*

z [ , L [ . (33c)
L kgwu

In deriving (33a–b) Businger et al. assumed k 5 0.35,
where k is the von Kármán’s constant. Högström (1988)
subsequently modified Businger et al.’s formula with
the more commonly accepted values for von Kármán’s
constant k 5 0.4 and for Fh at neutrality, (Fh)z50 5
0.95:

21/4(1 2 19.3z) : z , 0
F 5 (34a)m 51 1 6z: z . 0

21/20.95(1 2 11.6z) : z , 0
F 5 (34b)h 50.95 1 7.8z: z . 0.

The MY model (Mellor 1973; Mellor and Yamada
1982), by assuming , 5 kz in the surface layer, matches
the original Businger et al.’s formula very well except
for Fm in the unstable region (z , 0), where the MY
model underestimates the Kansas data by about 50%.

Recently Nakanishi (2001) has shown that in the surface
layer, as indicated by the LES data, , depends on z as
follows:

kz: z , 0
l 5 (35)

215kz(1 1 2.7z) : z . 0.

In the present level-2 model, the expressions for Fm and
Fh in terms of z (via Ri) as well as ,/(kz) are as follows:

211/4Ï2G (Ri) lM
F (Ri) 5 ,m 1/2 1 2B S (Ri) kz1 M

2F (Ri)S (Ri) RiF (Ri)m M mF (Ri) 5 , z (Ri) 5 . (36)h S (Ri) F (Ri)H h

Using Eqs. (35)–(36), we plot in Figs. 7 and 8 Fm

and Fh versus z for both unstable and stable conditions,
and compare them with the Kansas data as originally
formulated by Businger et al. (1971) and as modified
by Högström (1988). We also plot the results of the MY
model using the length scale (35). The comparison
shows that:

1) In the unstable region (z , 0), the present model
(solid line) improves significantly the MY model
(dotted line) for Fm, and improves Fh slightly.

2) In the stable region (z . 0), both the present model
and the MY model fall within the (scattered) data
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FIG. 7. The nondimensional shear Fm as a function of z 5 z/L.
The solid line represents the results using the present model, while
the dotted line corresponds to the MY model. The squares represent
the Kansas data formulated by Businger et al. (1971), while the tri-
angles represent Businger et al.’s formula modified by Högström
(1988).

FIG. 8. Same as Fig. 7 but for the nondimensional potential
temperature gradient Fh.

regions. For more stable cases, however, the two
models will further diverge, as we will show below.

In recent years, several LESs have provided and21Fm

as functions of the gradient Richardson number Ri21F h

(e.g., Mason 1994; Brown et al. 1994; Andrén 1995;
Kosovic and Curry 2000). The Wangara data have also
been analyzed and the resulting and plotted21 21F Fm h

(Carson and Richards 1978). In all these studies, tur-
bulence exists with significant intensity around the com-
monly accepted value of the critical Richardson number
0.2, and extends up to Ri of order unity. Since the most
recent LES by Kosovic and Curry (2000) use a more
advanced subgrid model, we choose to compare with
their results. We employ both the present model and the
MY model to simulate the same stably stratified PBL
used by Kosovic and Curry (2000), and compare the
models results with their LES of the high-resolution case
NLHRB, at hour 12, when a quasi-steady state is
reached.

In our simulation, we use the level-2 model since we
are particularly interested in the behavior of the model
when the gradient Richardson number Ri varies. While
the level-2.5 and -3 models depend on two independent
parameters, GM and GH, the level-2 model depends on
only one parameter, Ri. In the PBL we chose to simulate,
the diffusion terms are very small (see Fig. 11 of Ko-
sovic and Curry 2000). We have also run the level-2.5

and -3 models using the usual downgradient approxi-
mations for the diffusion terms, and the results are very
close to those from the level-2 model.

In fact, to see the full benefits of level-2.5 and -3
models, one needs to parameterize the third moments
much better than by the downgradient approximation.
As stated in the introduction, in the present study we
concentrate on the improvements due to the new pres-
sure correlation parameterizations, and leave the third
moment parameterizations for future study. Thus the
level-2 model with a commonly used length scale for-
mula, Eq. (5e), is most appropriate for testing the model.

In Figs. 9 and 10 we plot and as functions21 21F Fm h

of Ri. The graphs indicate that, in the context of Monin–
Obukhov similarity theory, for Ri , 0.2, the present
model recovers the observed Kansas data as analyzed
by Businger et al. (1971) and modified by Högström
(1988). For Ri . 0.2, the present model still produces
significant turbulence, in agreement with the LES data
by Kosovic and Curry (2000), which is consistent with
the LES of Mason (1994), Brown et al. (1994), and
Andrén (1995) and the Wangara data analyzed by
Carson and Richards (1978). In the figures we also plot
the results of the MY model, which fail to reproduce
the turbulence beyond Ri 5 0.2 found in the LES.

The differences between the present model and the
LES results are probably due to the neglect of the dif-
fusion terms and the imperfect parameterization of the
turbulence length scale, and search for better parame-
terizations of these two crucial components of the clo-
sure modeling should be among the subjects of future
studies.
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FIG. 9. The reciprocal of the nondimensional shear, , as a func-21Fm

tion of the gradient Richardson number. The crosses represent the
LES simulation of Kosovic and Curry (2000), case NLHRB, at hour
12. The solid line represents simulation results using the present
model, while the dotted line, simulation results using the MY model.
The triangles represent the Kansas data formulated by Businger et
al. (1971) and modified by Högström (1988).

FIG. 10. Similar to Fig. 9 but for the reciprocal of the
nondimensional potential temperature gradient, .21F h

FIG. 11. PBL height as a function of the dimensionless time tf c,
where f c is the Coriolis parameter. Cross: LES result; solid line:
present model result; dotted line: MY model result.

The PBL height is one of the most important quan-
tities in any PBL modeling. The PBL height is usually
defined as the height at which the turbulent kinetic en-
ergy or the magnitude of the momentum flux decreases
to a small fraction of the corresponding surface value;
or it may be defined as the height at which the (positive)
temperature gradient reaches a certain value from below.
In any case, the top of the PBL lies in a region where
the turbulence is stably stratified and, given the mean
profiles of the wind and the temperature (and thus given
Ri), a higher intensity level of turbulence yields a greater
PBL height. The MY model, however, underestimates
the PBL height (Yamada and Mellor 1975). Since the
present model predicts larger critical Richardson num-
ber and produces more turbulence for a given Richard-
son number, greater PBL heights can be achieved (Fig.
11).

9. Conclusions

With the application of the updated expressions for
the pressure–velocity and pressure–temperature corre-
lations and the use of the turbulence timescale ratios
fixed by recent RNG, we have derived a second-order
closure turbulence model to describe the PBL.

One of the improvements brought about by the pre-
sent model is that it distinguishes the vertical and the

lateral components of the turbulence kinetic energy in
neutral PBLs without the complexity of the wall func-
tions, something that was not achieved by previous sec-
ond-order closure PBL models.
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A main feature of the new model is that it yields a
critical Richardson number (Ric) of order unity, rather
than ;0.2, as given by most previous models. The larger
critical Richardson number is in agreement with mea-
sured and LES data and the stability analysis that in-
cludes nonlinear interactions. The new model compares
better than the previous models with the Kansas data as
analyzed by Businger et al. (1971) and modified by
Högström (1988) for both the unstable case (Ri , 0)
and the stable case when Ri , 0.2. While most previous
models predict no turbulence for Ri . 0.2, the present
model reproduces closely the LES and laboratory data
for Richardson numbers up to order unity.

In addition, the new model produces greater PBL
height than the previous models.
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APPENDIX

The Level-3 PBL Model

In the level-3 PBL model, the turbulent temperature
variance is solved from its prognostic equation2u
[which replaces the algebraic equation (14)]:

2D ] ]Q u
2 2u 1 wu 5 22 wu 2 2 . (A1)

Dt ]z ]z tu

From (10a)–(10b), the algebraic equation for the heat
flux iswu

]Q 1 ]U ]V
21 2wu 5 2l t w 1 (l 2 l ) uu 1 yu5 6 7 1 2[ ]]z 2 ]z ]z

21 21 l l gatu .5 0 (A2)

All the other algebraic equations for the Reynolds stress
and the heat flux, except (15i), which is replaced by
(A2), are the same as the level-2.5 model (15a)–(15h).
We solve (15a)–(15h) and (A2) using symbolic algebra
and the results are

]U ]V
(uw, yw ) 5 2etS , ,M1 2]z ]z

]Q
wu 5 2etS9 1 g , (A3)H c]z

where

1
21 21 2 2l 1 1 l l G 1 l 2 l G5 4 5 H 3 2 M1 2[ ]3

2g 5 l gatuc 0D

(A4)

is the countergradient term, which is absent in the level-
2.5 model and D is of the same form as in (18c). The

structure of the stability function SM differs from the SM

in the level-2.5 model (17a) by an extra term,

21 u
2S 5 s 1 s G 1 s G 1 s (gat) , (A5)M 0 1 H 2 M 3[ ]D e

where

1 1
21 21s 5 l l l l 1 l 1 l (l 1 l )3 0 4 5 3 2 5 6 7[ ]3 2

2
l 5 1 2 g 5 (A6)0 1 3

l0 is a new model constant in the level-3 model, and
s3 is a new derived constant. Note that in (A3) we use

instead of SH for the stability function because ofS9H
the existence of the countergradient term g c. The form
of the function is the same as SH in the level-2.5S9H
model (17b). The model constants B1 and l9s are the
same as in Table 1 except that now l8 5 0. The ex-
pressions for the derived constants d9s and s9s are the
same as in (18d) with l8 5 0.
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